
GPFS on a Cray XT

R. Shane Canon, Matt Andrews, William Baird, Greg Butler, Nicholas P. Cardo,

Rei Lee

Lawrence Berkeley National Laboratory

May 4, 2009

Abstract

The NERSC Global File System (NGF) is a center-wide production file system at NERSC based
on IBM’s GPFS. In this paper we will give an overview of GPFS and the NGF architecture. This will
include a comparison of features and capabilities between GPFS and Lustre. We will discuss integrating
GPFS with a Cray XT system. This configuration relies heavily on Cray DVS. We will describe DVS
and discuss NERSC’s experience with DVS and the testing process. We will conclude with a discussion
of future plans for NGF and data initiatives at NERSC.

1 Introduction

As High-Performance Computing systems continue
to scale, the demands placed on the file system con-
tinue to increase. As the computational systems
have increased in parallelism, so too have the file sys-
tems which support them. Two of the most common
parallel file systems used in large scale HPC systems
are IBM’s General Parallel File System (GPFS) [5]
and Sun Microsystems Lustre File System [4]. This
paper will briefly examine these two file systems in-
cluding their history, general architecture, and capa-
bilities. Some of the differences between the two file
systems are highlighted. The steps required to in-
tegrate GPFS on a Cray XT system are explained.
Cray’s Data Virtualization System (DVS) are de-
scribed since it is a key key technology for using
GPFS on a Cray XT system.

2 GPFS Overview

GPFS is IBM’s flagship scalable file system. It is a
mature product with over a decade of research and
development invested in it. GPFS originated from
Tiger Shark, a file system designed to support in-
teractive multimedia systems first conceived in the
early 1990s. Since that time it has evolved to sup-
port large HPC systems across various platforms in-
cluding AIX cluster, Blue Gene systems, and various
flavors of Linux Clusters. Some of the largest GPFS

file systems include the file system on Lawrence Liv-
ermore National Lab’s Purple [3] and Argonne Na-
tional Lab’s Intrepid [2]. Purple with over 1500
clients has a 2 PB file system and has demonstrated
122 GB/s of file system bandwidth.

2.1 Architecture

GPFS employs a shared disk model with a dis-
tributed lock manager to insure consistency. Disks
can be shared via a Network Shared Disk (NSD),
through a common storage area network (SAN), or
both models concurrently. In an NSD mode, each
disk is accessed by a specific server or set of servers
and then projected over a network to the clients. Ad-
ditionally, AIX supports Virtual Shared Disk (VSD)
mode. This is similar in design to an NSD, but the
sharing is performed by the Operating System ver-
sus GPFS. The distributed lock manager maintains
consistency. A central manager issues tokens that
permit the token holder to issue byte-range locks.

GPFS also supports a multicluster configuration.
In this type of configuration, the client clusters and
server clusters can be placed in separate GPFS clus-
ters. This changes the communications patterns for
lock negotiations. If a client possesses the token for
a file and another client in the same GPFS cluster
needs to negotiate a lock, the token will remain on
the client cluster and the clients will communicate
directly with each other to negotiate the locks. On

CUG 2009 Proceedings 1 of 6

the other hand, if a different GPFS cluster needs to
negotiate a lock for a file, the token will shift back to
the ”owning cluster” and the lock will be negotiated
between the various clusters. A multicluster configu-
ration affects other processes as well, but the impact
on the lock negotiations is the most significant.

3 Lustre Overview

Lustre was conceived as a response to the Advanced
Simulation and Computing Initiative (ASCI) Path-
Forward File System. The contract for the develop-
ment was awarded to Hewlett Packard who subcon-
tracted Cluster File Systems, Inc to perform the de-
velopment. This contract expired in 2005. In 2007,
Sun Microsystems acquired Cluster File Systems,
Inc. While the development and overall control of
Lustre is maintained by Sun, the majority of the file
system is licensed under a GPL license and can be
freely downloaded from Sun. Lustre has broadened
in its reach while continuing to scale to the largest
HPC systems. The largest Lustre file system is de-
ployed at Oak Ridge National Labs and supports
its Jaguar system. The file system has over 25,000
clients, is 10 PB in size, and has demonstrated over
200 GB/s of file system bandwidth.

3.1 Architecture

Lustre is an object-based file system. Metadata is
stored on a single Metadata Target and extend data
is stored on Object Storage Targets (OSTs). File
data can be striped across multiple OSTs to achieve
high-bandwidth. Lustre provides its own transport
layer called LNET. LNET supports many networks
and can efficiently route between networks. Routing
can even be striped across many routers and can de-
tect and avoid failed routers. Locks are maintained
by the OSTs. Clients will optimistically obtain a
large byte range lock and then renegotiate the locks
with other clients as new write requests arrive.

4 NGF

The NERSC Global File system (NGF) was ini-
tially deployed in 2004 to provide a global file sys-
tem across all NERSC production systems. The file
system is based on GPFS and currently provides
over 400 TB of space. The file system was intended
to enable collaborative data sharing as well as sim-
plify running complex work-flows that span multiple

NERSC systems. The ultimate vision of the file sys-
tem was to replace the islands of storage coupled to
the large systems with a global scratch file system
that would facilitate data sharing and simplify data
management.

4.1 NGF Architecture

An overview of the NGF architecture is illustrated in
Figure 1. NGF makes use of many of the advanced
capabilities of GPFS including a mixture of SAN and
NSD access, storage pools, file sets, and mixed hard-
ware architectures. For systems geared towards data
intensive applications, SAN mode mounts are used
to ensure the best possible bandwidth to the stor-
age. For many of the clusters, private NSD servers
are used. These servers are directly connected to the
high-speed interconnect of the cluster (i.e. Infini-
Band or Federation). This allows better utilization
of the bandwidth and reduces the load on the center-
wide Ethernet network. For the Cray Systems, the
GPFS client is deployed on specific service nodes
which access the storage via the SAN. An I/O for-
warding layer called DVS (described below) projects
the NGF file system into the compute nodes.

4.2 NGF in Operation

NGF relies heavily on the fail-over and reliability
features of GPFS. Many of the upgrades and config-
uration changes are made live without taking the file
system out of production. GPFS’ many advanced
management capabilities make this possible. The
fail-over mechanism allows rolling upgrades of the
GPFS software to be performed without requiring
an outage. In the past year, NGF has made nu-
merous changes where new storage was added, older
storage was drained and migrated out, and space
was rebalanced across devices. All of these were
done while the file system was online and accessi-
ble by users. Scheduled outages are taken only to
perform the few tasks that require the file system
to be offline. For example, changes to the list of
servers handling a storage device must be done with
the device removed from the file system or with the
file system offline. Therefore, adding a new private
NSD server requires that the file system be down.

NGF also leverages many of the data manage-
ment features of GPFS. For example, the project
file system contains directories for many of the ma-
jor projects at NERSC. In addition, some projects
requests sub-project directories to address specific

CUG 2009 Proceedings 2 of 6

details of their collaborations. Each of these project
directories uses GPFS file sets to control the overall
allocation of space. This is more logical than using
user or group based quotas since group ownership
can get intentionally or accidentally changed within
a directory which leads to confusion about where
space is being consumed for a group. GPFS also has
the ability to create storage pools. A set of policies
allows the administrator to control how these stor-
age pools are used. These policies can be based on
the path of a newly created file, as well as file char-
acteristics such as age or size. NGF currently places
older files which have not been accessed in several
months on a pool of SATA based storage, thus free-
ing up high-performance FibreChannel storage for
more active data. NGF also uses storage pools for
certain data sets that are intended for access through
web portals thus having more relaxed requirements
for performance.

5 Cray’s Data Virtualization
System (DVS)

An I/O Forwarding layer ships I/O commands from
a client host to a proxy host where the actual com-
mands are performed. The results from the opera-
tion are then shipped back to the originating client.
I/O forwarders offer several interesting advantages
on large scale HPC systems. They reduce the num-
ber of clients that the file system must directly man-
age. This can reduce the complexity of the lock
management across thousands of clients. Secondly,
it eliminates the need for the file system client to
run directly on the compute node. This can result

in a smaller memory foot print on the compute node
for file system support and can be more amendable
to light-weight kernels. The chief disadvantages to
an I/O forwarder are: they introduce additional la-
tency as the data and commands move through the
additional layers the I/O forwarder introduces: and
they shift the scaling problem from the file system
to the I/O forwarding system. An I/O forwarding
system has been demonstrated to effectively scale to
very large system as demonstrated by various IBM
BG/L and BG/P systems.

Cray offers an I/O forwarding layer based on
software originally developed at Unlimited Scale,
now Cassatt. It was originally developed to sup-
port large Linux clusters. DVS layers on top of Por-
tals [1] and makes effective use of the SeaStar’s re-
mote put/get capabilities. DVS is a client/server
based system. The clients typically run on the com-
pute nodes and ship the I/O operations to the DVS
servers where the operations are performed. The
DVS servers would normally run on SIO nodes run-
ning the native file system client. Initial versions
of DVS only supported a single DVS server. How-
ever, Cray has extended DVS to support multiple
DVS servers including striping operations for a sin-
gle file across multiple DVS servers. This is critical
for using DVS on top of parallel file systems such as
GPFS, since this allows individual client to leverage
the parallelism of the file system. DVS provides vari-
ables and options to control how the IO is decom-
posed across the servers. They include mount op-
tions as well as run-time options expressed through
environment variables. When striping is used, a list
of servers is specified. A block size parameter (blk-
size) controls how large of a chunk is directed to a

N G FS A N � � � �� 	
 � � �
 ��
 �� � � � � � � � � � � � � � � � � � �
� � � � � � � � ! " # $% & � ' ! () * + ,� ! - ,

E t h e r n e tN e t w o r k
7 8 9 9 :; < = = >? @ A B C � 9 �C � � � D �E F < G H I? @ A B C � 9 �

J K L M N O P M
Q � D RF R A N K L I NS A N � * [+ \ ,

N G F T o p o l o g y

Figure 1: NGF architecture

CUG 2009 Proceedings 3 of 6

specific server before going to the next server in the
list. Another parameter (maxnodes) determines how
many serves from the list will be used for a specific
access. The client will wrap back around to the ini-
tial server based on a modula (maxnodes x blksize)
of the offset. To insure that all clients utilize the
same subset of servers in the same order, a hashing
algorithm based on the filename is used. This helps
minimize the overhead of the lock management for
the underlying parallel file system.

DVS consists of a set of kernel modules that are
loaded on both the client and server. The client
modules plug into the standard Linux Virtual File
System (VFS) layer and a standard mount command
is used to mount the file system. A sample mount
command is shown below. The options include the
on the DVS server to be mounted on the client, a
list of server nodes, the block size, maxnodes, among
others. Some of these options can also be controlled
with environment variables (i.e. DVS MAXNODES
and DVS BLOCKSIZE). This enables users to tune
the behavior of DVS if the application has certain ac-
cess patterns that conflict with the defaults. To con-
vert between the names specified in the nodename
list, a node-map is loaded into the kernel memory
through a file (proc/fs/dvs/ssi-map). The map con-
sists of a simple list of space separated pairs of names
and NIDs (portals Network Identifier).

mount -t dvs -o path=/mnt,nodename=

c0-0c2s0n0:c0-0c2s0n3:c0-0c2s1n0:

c0-0c2s1n3,blksize=1048576 /mnt /mnt

The authors had planned to include early per-
formance results for DVS. Some of these tests have
been conducted. However, the back-end GPFS file
system for the tests was not of sufficient scale to ex-
tract meaningful performance numbers. The impact
of adding additional DVS servers was studied and
shows good scaling but is heavily constrained by the
back-end file system. Table 1 summarizes the results
of those tests. The back-end file system was capa-
ble of around 2GB/s. The results demonstrate that
DVS is able to provide performance consistent with
the underlying file system.

6 GPFS on a Cray XT System

GPFS can be easily ported to run on the Cray XT
SIO nodes. The process is simplified by the fact that
the SIO nodes run a full Linux OS based on SuSE

Linux Enterprise Server (SLES) and SLES is a sup-
ported distribution for GPFS. The primary changes
revolve around the locations for the kernel headers
which are required to build the GPFS compatibil-
ity layer and subtle aspects of how the IP addresses
are configured for the SeaStar interface. After in-
stalling the correct kernel source in /usr/src, it is still
necessary to create symbolic links from the appro-
priate /lib/modules/kernel version to the /usr/src
directory. Once this is done, the normal steps for
installing GPFS can be performed within the Cray
shared root environment. It was also found that two
files (mmremote and mmsdrfsdef) had to be modi-
fied to correctly extract the IP address for the node.
By default, these utility use output from ifconfig.
However, Cray uses the ip utility to configure the
address.

7 Comparison of GPFS and
Lustre

While GPFS and Lustre are both used to support
large HPC systems, their roots and development his-
tory have lead to significant differences in their ca-
pabilities and development focus. GPFS’s roots as a
file system to support interactive video has lead to
a design that favors reliability, predictable perfor-
mance, manageability, and good metatdata access
characteristics. These features are emphasized over
scaling and peak performance which are also impor-
tant to GPFS. Lustre’s roots from the ASCI Path
Forward project focused on massive scaling and per-
formance. While Lustre has always aimed to support
tolerance to single points of failure and recovery from
various failure modes, it relies on timeouts and ex-
ternal heartbeat programs to initiative fail-over and
recovery. Furthermore, some aspects like clustered
metadata have been on the Lustre road map for sev-
eral years but have been delayed in many cases to
permit improvements in performance and scaling.

In contrasting the architecture of the two file
systems, there are several fundamental differences
that are evident. First, GPFS is based on a shared
disk model, whereas Lustre uses an Object Storage
model. Second, GPFS uses a distributed lock man-
ager whereas in Lustre, lock management as handled
by the OSSs in a semi-centralized manner. While
these approaches can be viewed as two ways of ac-
complishing the same things (scalability and con-
sistency), these differences have significant ramifica-

CUG 2009 Proceedings 4 of 6

tions in the capabilities of the file system and the
pressure points in scaling.

In the GPFS shared disk model, the clients al-
locate the blocks and the block is the fundamental
unit. In the OST model, the Object storage servers
own the block device. The clients read and write to
objects. The object model adds additional context
to a request and the OSS can check an operation
to see if it is permissible. This has several con-
sequences. For example, supporting a SAN access
model in an object based file system is fundamen-
tally at odds with the design, since the trust would
essentially have to be shifted to the clients. Stated
another way: in the shared disk model the client
handles many of the key decisions; whereas in the
object model the OST (handled by the OSS) is re-
sponsible for managing many of the details of lock
management and disk allocation.

The consistency model of the two file systems
also has an impact. GPFS’s distributed locking
model depends heavily on the clients have a con-
sistent view of who possesses tokens and locks in the
file system. GPFS designates quorum nodes that are
responsible for deciding what the consistent view is.

Table 2 summarizes some of the features and ca-
pabilities for GPFS and Lustre. The table is based
on the latest release for both file systems and data
from currently deployed systems.

Acknowledgments

The authors wish to thank Dean Roe, Terry Mal-
berg, Brian Welty, and Kitrick Sheets for sharing
results for DVS testing, as well as, details about the
workings of DVS. This work was supported by the

Director, Office of Science, Office of Advanced Scien-
tific Computing Research of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

About the Authors

Shane Canon is the Group Leader for the Data Sys-
tems Group at the National Energy Research Sci-
entific Computing Center. Matt Andrews, William
Baird, Greg Butler, and Rei Lee are members of the
Data Systems Group. The author can be reached
via e-mail at SCanon@lbl.gov.

References

[1] Ron Brightwell, William Lawry, Arthur B. Mac-
cabe, and Rolf Riesen. Portals 3.0: Protocol
building blocks for low overhead communication.
In IPDPS, 2002.

[2] Argonne National Laboratory. Argonne
leadership computing facility, May 2009.
http://www.alcf.anl.gov/.

[3] Lawrence Livermore National Laboratory. ASC
purple, May 2009. http://asc.llnl.gov/.

[4] Sun Microsystems. Lustre, May 2009.
http://www.lustre.org/.

[5] Frank Schmuck and Roger Haskin. GPFS: a
shared-disk file system for large computing clus-
ters. In FAST ’02: Proceedings of the 1st
USENIX Conference on File and Storage Tech-
nologies, page 19, Berkeley, CA, USA, 2002.
USENIX Association.

clients servers read (MB/s) write (MB/s)
1 1 520 485
1 2 916 922
1 4 1345 1462
1 8 1765 1470
1 16 1754 1388
1 20 1870 1439

Table 1: Table summarizing DVS performance as the number of DVS servers is increased. The backend file
system was limited to around 2GB/s. Courtesy of Cray

CUG 2009 Proceedings 5 of 6

f
N S DS e r v e r S A NC l i e n t

T C PC l i e n tN S DS e r v e r R D M AC l i e n tI BT C P
S A NN e t 1M D S / O S S T C PC l i e n t R D MA C l i en tN e t 2R o u t e r

G P F S

L u s t r e
Figure 2: GPFS and Lustre network architectures.

Capability GPFS Lustre
Demonstrated Scalability

Number of clients 1,500 25,000
File System Size (PB) 2 10
Bandwidth (GB/s) 120 200
Management Features

Online Adding of Storage ✔ ✔

Online Removal of Storage ✔

Online Re-balancing of Storage ✔
Online Fsck ✔ Partially supported
User and Group Quotas ✔ ✔
Filesets ✔ ✔

Storage Pools ✔ (Due in 1.8)
Quotas ✔ ✔
Snapshots ✔

Networking Features

TCP/IP ✔ ✔

RDMA InfiniBand ✔ ✔
IBM Federation ✔

SeaStar ✔
Quadrics ✔

Routing across Networks Types Only if using TCP/IP ✔

Metadata Features

Clustered/distributed Metadata ✔ Scheduled for 3.0

Table 2: Table summarizing a comparison of features and capabilities of GPFS and Lustre.

CUG 2009 Proceedings 6 of 6

	Introduction
	GPFS Overview
	Architecture

	Lustre Overview
	Architecture

	NGF
	NGF Architecture
	NGF in Operation

	Cray's Data Virtualization System (DVS)
	GPFS on a Cray XT System
	Comparison of GPFS and Lustre

